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Abstract 
 

This paper discusses the use of singular values and 
singular vectors in the solution of large inverse problems 
that arise in the study of physical models for the internal 
structure of the Earth. In this study, the Earth is 
discretized into layers and the layers into cells, and travel 
times of sound waves generated by earthquakes are used 
to construct the corresponding physical models. The 
underlying numerical models lead to sparse matrices with 
dimensions up to 1.3x106-by-3x105. Singular values and 
singular vectors of these matrices are then computed and 
used in the solution of the associated inverse problems 
and also to estimate uncertainties. The paper outlines the 
formulation adopted to model the Earth and the strategy 
employed to compute singular values and singular 
vectors, shows results for two models that have been 
studied, comments on the main computation issues related 
to the solution of these problems on high performance 
parallel computers, and discusses future improvements of 
the adopted computational strategy. 

 
 

1. Introduction 
 
The solution of many practical problems requires the 

computation of eigenvalues λ and eigenvectors z of an n-
by-n sparse matrix A, that is to say, the computation of 
non-trivial solutions of the problem 

.zAz λ=                             )1(  
Without being exhaustive, eigenpairs are used to study 

configuration of molecules, electric circuits, neutron 
fluxes in nuclear power plants, dynamic properties of 
structural models, and also for extraction of features in 
biometric applications. Our problem corresponds to a 
variation of (1). In particular, we are interested in the 

singular value decomposition problem (SVD) [1] of an m-
by-n matrix G,  

,TVUG Σ=                     )2(  
where ]...[ 21 ruuuU =  and ]...[ 21 rvvvV =  are m-by-r 
and n-by-r orthogonal matrices, respectively, and 

).,(,...),,...,( mindiag 2121 nmrrr =≥≥=Σ σσσσσσ
The columns of U are the left singular vectors, the 
columns of V are the right singular vectors, and the 
entries in Σ are the singular values. The SVD allows for 
the computation of generalized (or pseudo) inverses, 
which are important for the solution of inverse problems 
[2]. The generalized inverse of G is defined as [3]  

.1† TUVG −Σ=                    )3(  
The solution of inverse problems is required in 

applications such as satellite navigation, medical 
tomography, image enhancement and seismic 
tomography. In such applications, given a set of physical 
data, the goal is to estimate a set of model parameters 
describing the problem at hand. Also important is to 
determine limits of the inferences that can be drawn from 
the data. In practical analyses, G and its generalized 
inverse are approximated by a truncated or low-rank SVD, 
that is to say,  
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where ]...[],...[ 2121 kkkk vvvVuuuU == ,  and 
),...,(diag 21 kk σσσ=Σ , .rk <   

Problems (1) and (2) are strongly related to each other 
because u, v andσ can be obtained by means of the 
eigenvalue problems [1]  
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where 2σλ = . One of these two eigenvalue problems is 
of order m, the other is of order n; whichever problem is 
of larger order has m-n additional eigenvalues equal to 
zero. Alternatively, one can compute the SVD by solving 
the augmented eigenvalue problem [1]  
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where .σλ ±=  This problem also has m-n additional 
eigenvalues equal to zero.  

Similarly to A in problem (1), G is usually sparse and 
its dimensions can be very large. In addition, several 
hundred singular values and singular vectors may be 
required in some applications. Therefore, preserving and 
exploiting sparsity is critical to finding solutions 
efficiently, which means that GGT and TGG in (5) should 
not be explicitly computed since they are likely to be full. 

In the last few decades, models of the 3-D seismic 
structure of the Earth have become increasingly 
sophisticated [4]-[6]. It is known that the 3-D distribution 
of density, temperature and the P (compressional) and S 
(shear) velocities within the Earth have a direct 
relationship to its dynamics. A great variety of studies 
have been made possible due to a continuous 
accumulation of seismic data around the globe, 
advancements both in instrumentation and data analysis, 
our ability to model processes in the Earth, such as mantle 
and core convectiona, and the development and 
implementation of efficient algorithms for dealing with 
inverse problems [7]. Since there is no direct means of 
sampling the interior of the Earth, information must be 
derived indirectly, mainly from measuring the travel time 
of seismic waves as they cross through the Earth. The 
signal source is an earthquake and the receivers are more 
than 1,000 seismographic stations around the globe.  

This paper is concerned with some of the calculations 
that are required to obtain a physical model for the 
internal structure of the Earth. In this study, the Earth is 
discretized into layers and the layers into cells. The 
velocity of wave propagation in each cell is represented 
by a set of parameters that account for anisotropy, 
location and correction of sources and receivers, etc. 
These parameters are written in matrix form and the goal 
is to fit the model by means of some known data. Travel 
times of sound waves generated by earthquakes are used 
to construct the model. The underlying numerical models 
lead to sparse matrices with up to 1.3x106 rows (the 
number of travel times used), 3x105 (the number of 
parameters in the model) and 5x107 non-zero entries.  
                                                 
a Basically, the Earth is formed by a crust, a mantle and a core. The crust 
is about 8 km thick under the oceans and 40 km under the continents. 
Below the crust and roughly 3000 km thick is the mantle, which is 
separated into upper and lower portions. Below the mantle are Earth’s 
outer and inner cores. 

Several numerical strategies have been proposed to 
assess the reliability of physical models of the Earth. 
Vasco et al. [5], for example, use a formulation that 
requires an LU decomposition [1] of a full matrix for the 
calculation of resolution and covariances, and which can 
therefore be prohibitive for large models because of 
storage and computer time requirements. Alternatively, 
variations of the least-squares QR decomposition (LSQR) 
[1] for the calculation of resolution and covariances have 
been proposed by Yao et al. [13] and Zhang and 
McMechan [13]. Also important in our application is the 
determination of spatial resolution and uncertainties, but 
these may not be very well determined by LSQR type 
methods. In the present work we focus on the calculation 
and use of singular values and singular vectors to solve 
inverse problems and to estimate uncertainties. Although 
our matrices are sparse, such problems are difficult to deal 
with since a large subset of singular values and singular 
vectors may be required for a proper estimation of spatial 
resolution and uncertainties. 

In the following sections we outline the formulation 
adopted to image the Earth and the strategy employed to 
compute singular values and singular vectors, give results 
for two models that have been studied, comment on the 
main computation issues related to the solution of these 
problems on high performance parallel computers, and 
discuss future improvements of the adopted computational 
strategy. 

 
2. Methodology 

 
In this section we outline the representation of Earth’s 

structure, the estimation of velocity variations in the entire 
Earth and the assessment of the resulting estimates. The 
procedure is akin to constructing a CAT scan in medical 
imaging. 

 
2.1. Representation of the structure of the Earth 

 
Several classes of parameters have to be taken into 

account in order to represent the complexities of wave 
propagation through the Earth [4]-[6]. Let us consider a 
travel time for a phase of type k (P,S,PP,PKPbc…) 
observed at station i, associated with earthquake j, .ijktδ  
In our model we solve for shifts in the depth, latitude and 
longitude of the earthquake and shifts in the earthquake 
origin time, ,4,3,2,1 , =lhl

jδ  and include station delays 
for compressional and shear phases read at each station, 

.2,1  , =lsl
jδ  The velocity is assumed to be constant in 

each cell and the unknowns represent deviations from the 
average layer velocity, v.δ  We model the velocity of 
sound waves traveling in the Earth. 

 



2.2. Robust estimation 
 
The relationship between the change in arrival time 

and the structural parameters of the Earth is non linear. 
However, it is thought that the deviations from a purely 
radial variation are small. Therefore, a Taylor series 
expansion truncated to the first order produces a linear 
equation relating arrival time deviations to perturbations 
in Earth’s structure [6][7], 
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for the k-th phase arrival time associated with event j, 
recorded at station i, where ns, nb and na are functions of 
the ray path. Given a large collection of arrival times from 
various source and receiver combinations, we can infer 
variations in the structure of the Earth. The relationship 
between the vector of traveltime deviations, ,tδ  the 
vector of velocity perturbations, v,δ  hypocentral location 
changes, ,hδ  station corrections, ,sδ  boundary 
deflections, ,bδ  and variations in inner core anisotropy, 

,aδ  may be written in matrix form as 

,absht δδδδδδ ABSHV ++++= v )8(  
where V, H, S, B and A contain the partial derivatives of 
the travel time with respect to velocity variation, 
earthquake locations, station corrections, boundary 
deflections and inner core anisotropy deviations, 
respectively [6][7].  

A least-squares technique can be used to solve 
equation (8) [1][7]. However, the excessive number of 
outliers often found in travel time data sets may lead to a 
violation of the basic assumptions underlying the least 
squares (normally distributed errors). The approach we 
adopt is based upon the minimization of the pl  norm of 
the residual vector [8]. In our particular application, we 
set 25.1=p , which is derived from an analysis of our 
composite data set [9]. Defining [ ]  AB  S  HVM   =  and 

[ ]Tabshx δδδδδδ     v= we write the pl  residual norm 
minimization problem in a compact form as 

∑∑
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,min δδm                   )9(  

where m is the total number of constraints and n is the 
total number of parameters. The solution of  (9) can be 
carried out by repeatedly solving a weighted system of 
linear equations [11]  

,2/12/1 tx δδ NMN =                      )10(  

where the weights or scaling contained in 1/2N are varied 
systematically. The matrix 1/2N  is diagonal and its i-th 
element is  

.|| 2

1

2/1 −

=
∑ −= p

n

j
i itjxij δδmn              )11(  

The solution of (10), ,xδ  is used to compute the set of 
scaling factors in (11), the equations are rescaled and (10) 
is solved again. The procedure is repeated until 
satisfactory convergence is achieved. If we define 

MN1/2=G  and td δδ 1/2N= , we can write, 
,dxG δδ =                            )12(  

whose approximate solution, ,~xδ  can be computed by 
means of the generalized inverse of G, 

.~ dUVx T
kkk δδ -1Σ=                       )13(  

 
2.3. Model Assessment 

 
Model parameter resolution is a quantitative measure 

of averaging or blurring inherent to model parameter 
estimates. If we assume that a “true” solution, ,x̂δ  exists 
for (12), then we can substitute dδ in (13) to obtain 

.ˆˆˆ~ † xRxVVxGGx T
kkkk δδδδ ===           )14(  

The elements of a row of R, the resolution matrix, are 
averaging coefficients that quantify the contribution that 
all parameters make to the estimates. For a rank-k 
approximation of G, the averaging results from retaining 
only k singular values and singular vectors, rather than the 
full spectrum (r singular values and singular vectors). 

The model covariance matrix contains measures of the 
uncertainties associated with the model parameters as well 
as the mapping of the uncertainty between parameters. In 
particular, the diagonal elements are the variances 
corresponding to the estimates. Assuming that the data are 
uncorrelated with uniform variance 2

dσ , we can write the 
model parameter covariance matrix as 

T
kkkd

T
kkdm VVGGC 222 )( †† −Σ== σσ .        )15(     

If one is only interested in calculating elements of R 
and ,mC  the amount of computation can be reduced 
because only a subset of the singular values and 
corresponding right singular values is required for those 
calculations. Also, to find a solution for (13) one could 
alternatively use a least squares algorithm [9][11]-[13].  



Algorithm 1. Block Lanczos Algorithm. 
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3. The Computation of a Partial SVD 
 

In this section we outline the approach used to compute 
k singular values and singular vectors of G. Algorithms 
for computing the SVD can be downloaded from Netlib 
[15], for instance. However, the algorithms available in 
Netlib are intended for the computation of either a small 
subset of singular values and singular vectors of sparse 
matrices [16] or the complete set of singular values and 
singular vectors of full matrices [17][18].  

The method we use in our applications is based on a 
block version of the Lanczos algorithm [18] implemented 
by one of us. Given a symmetric n-by-n matrix A and 

]...[ 21 pqqqQ = , where Q  is orthogonal and p is the 
block size, the block Lanczos algorithm generates a basis 
for the Krylov subspace defined as 

),...,(),,( 1QAAQQspanjQA j−=K . In this subspace, 
QA j 1−  converges towards the eigenvectors associated 

with the p dominant eigenvalues of A as j increases. One 
of the advantages of generating a basis for ),,( jQAK  is 
that more than p approximations for eigensolutions of A 
can be obtained as j increases. Another important feature 
of the algorithm is that A is accessed only as a matrix-
vector product for the basis generation process.  

For the computation of the SVD, one can set 
GGA T=  or TGGA = as indicated in (5). Also, one can 

choose the problem of smaller order to compute the 
shorter set of singular vectors, say (5a) to compute V if 

nm >  (which is the case in our applications). Given 
UV   , can be obtained as .1−Σ= AVU  The algorithm we 

use is summarized below as Algorithm 1 [20]. In that 
algorithm, the product jAQ  is carried out in two steps, a 
and b. Steps c to e correspond to Gram-Schmidt 
orthogonalizations [1], and in step f a modified Gram-
Schmidt orthogonalization procedure can be used to factor 
R as 11 ++ Β jjQ , where 1+jQ  is orthogonal and 1+Β j  is an 
upper triangular matrix [19]. Then, after j iterations the 
vectors Q  can be arranged as ]...[ 21 jj QQQ=Q , where 

jQ is orthogonal. Also, jj
T
j TA =QQ , where jT  is a 

block symmetric tridiagonal matrix, 
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which means that the projection of problem (1), or 
equivalently (5a), into jQ  is given by .jT  An 

approximate solution )~,~( zλ  for (1), or equivalently 

)~,~( vλ  for (5a), is given by the Ritz value iθλ =~
 and by 

the Ritz vector ij sz Q=~ , where ),( ii sθ  is the solution 

of the eigenvalue problem .x,...2,1  , pjissT iiij == θ  
Usually, the extreme eigenvalues (and corresponding 
eigenvectors) of jT  lead to good approximations of 
extreme eigenvalues (and corresponding eigenvectors) of 
the original n-by-n problem with j<< n. Convergence can 
be monitored through the residual norm ||~~~ zzA λη −||= , 
which can be approximated at very low cost by means of 
the quantities 1+Β j and is computed as the algorithm 
progresses [19]. 

In finite precision arithmetic, a loss of orthogonality 
among the vectors of the basis generated by the Lanczos 
algorithm is generally observed after some steps, which 
leads to the convergence of spurious eigenvalues and 
eigenvectors. However, several strategies can be 
implemented to monitor and keep the orthogonality within 
a certain level, such as selective orthogonalization and 
partial orthogonalization [19]. The implementation of 
such strategies implies in additional steps in Algorithm 1 
(see [20] for details). 

The main disadvantage of Algorithm 1 is that by 
using GGA T=  the condition number of G is squared and 
this can lead to numerical difficulties if small singular 
values are wanted. However, this may be advantageous 
when only the largest singular values are of interest, and 
this is what is sought in our applications. Another 
possibility for the computation of the SVD of G is the 
bidiagonal formulation of the Lanczos algorithm applied 
to (6) [1]. In this case, however, convergence of small 
singular values is slow because of the location of those 
values in the center of the spectrum .σλ ±=  In addition, 
vectors of length m+n are required in problem (6) and this 



can be a hurdle for very large problems. Alternatively, the 
bidiagonal Lanczos algorithm can be rearranged to 
generate two bases of vectors of length m and n [1]. 

 
4. Implementation Details 

 
In our applications we use a parallel, MPI based 

version, of Algorithm 1. A sparse format storage scheme 
is used to store G: one (integer) array stores the number of 
nonzero entries in each row, one (integer) array stores the 
column indices, and one (real) array stores the 
corresponding entries. In our implementation one 
processor reads G and distributes its rows among the 
participating processors. If needed, another redistribution 
is performed to guarantee that each processor holds 
roughly the same number of entries of G; therefore, the 
number of rows of G per processor may differ. This 
(re)distribution is important to assure a good load balance 
in the parallel matrix-vectors products involving G. On 
the other hand, the matrix jQ  generated by Algorithm 1 
is full and the memory it requires is proportional to jmax. In 
our implementation jQ  is distributed also by rows among 
the available processors. In this case, however, each 
processor stores m/npe rows of jQ , where m is the 
number of rows and npe is the number of processors (a 
similar strategy is used for V, which is also full). Because 
of the storage scheme adopted for jQ , we need to group 
the rows of G contained in each processor in blocks of 
m/npe columns each. This facilitates the computation of S 
and R in Algorithm 1 but requires a prior (quick) sorting 
and reordering of the arrays that store the column indices 
and entries of G. With this strategy we also greatly reduce 
cache misses in the (sparse) matrix products involving G. 

In order to compute a large number of singular values 
and singular vectors for large models we use Algorithm 1 
only to generate Q.  Tests for convergence are not 
performed, which means that we solve sTs θ=  and 
compute singular vectors in a post-processing phase. This 
strategy allows us to save computing time and the 
memory required to store the eigenvectors of T, as well as 
the Ritz vectors sz Q=~ . In addition, we can save Q and 
restart the algorithm to add more vectors to it if needed, 
therefore obtaining more approximations for singular 
values and vectors (and at the same time introducing a 
checkpoint capability). We use parallel IO features 
implemented in MPI-2 to read and write all relevant 
information for restarting into a (binary) file.  

 For the parallel solution of the (block) tridiagonal 
eigenvalue problem, we use ScaLAPACK, which 
provides algorithms for dense linear algebra calculations 
and which is one of the tools available in the US 
Department of Energy’s (DOE) Advanced Computational 

Software (ACTS) Collection [21]. The ACTS Collection 
is a set of computational tools developed primarily at 
DOE laboratories and is aimed at simplifying the solution 
of common and important computational problems. The 
use of ACTS tools reduces the development time for new 
codes and the tools provide functionality that might not 
otherwise be available. As a matter of fact, we foresee the 
use of other ACTS tools in the applications discussed in 
this work, in particular Global Arrays for performing data 
distribution, and TAU for a comprehensive performance 
analysis and tuning of the most time consuming parts of 
our codes (see next section). For more information on 
these tools we refer the reader to [21]. 

 
5. Numerical Results 

 
In this section we show numerical results related to two 

models of the Earth. Table 1 shows the dimensions of the 
numerical models and the number of non-zero entries in 
the corresponding matrices. In the first model, the Earth is 
parameterized by 22 depth layers of 1136 cells each. The 
lateral dimensions of the cells are 6o-by-6o at the Equator. 
In the second model, the Earth is parameterized by 12 
layers of 1136x4, 3o-by-3o, cells each in the mantle and 10 
layers of 1136, 6o-by-6o, cells each in the core.  

All computations were performed in single precision 
on a 696 processors CRAY T3E-900, 256 Mbytes of 
memory on each processor, available at the DOE’s 
National Energy Research Scientific Computing Center 
(NERSC). Table 2 shows the number of steps, the total 
wall-clock time (in seconds) and the time breakdown (in 
%) for the computation of 500 singular values and 
singular vectors of model 1 using Algorithm 1, for five 
values of p. We used 32 processors and .10 6−<η  The 
matrix-vector products dominate the costs, followed by 
the computation of converged Ritz vectors, solution of the 
reduced eigenvalue problems, and reorthogonalization 
operations. Reading and distributing G among the 
processors takes roughly 2 minutes. We would like to 
point out that similar calculations with p=1 required 
several weeks on a Sun workstation [7]. Therefore, the 
above timings indicate a speed-up of orders of magnitude. 

Using the strategy described in Section 4 we were able 
to compute up to 20000 vectors for model 2 by doing four 
restarts, using from 64 processors (10000 vectors, 6 hours 
of wall-clock time) to 256 processors (2000 vectors, 2 
hours of wall-clock time). That number of vectors requires 
roughly 50 Gbytes of disk space. Figure 1 shows the 

distribution of iλ~  for model 2, for four values of k. The 
right end of the curves become flat as k increases, which 
means that small singular values begin to converge. In 
general, the first third part of each curve, i.e., 

,31 ),,( kisii ≤≤θ  lead to good approximations of 
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Figure 1. Ritz values distribution for model 2, 
k=5000, 10000, 15000 and 20000. 
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 Table 1. Characteristics of two models 
examined. 

odel m n non zeros 
1 846968 96300 28587210 
2 1433102 307134 47968477 
lar values and singular vectors, the remaining is  
to linear combinations of singular vectors that are 
gonal to the ones that have converged. We have 
red this property in our calculations, by using 

,kk SQ ],... [ x21 pkk sssS =  for the computation of 

ather than .kV   
 Figure 2 we plot )(diag R  for model 2. As k 
ases R becomes more diagonal dominant, indicating 
e the model has been well resolved. We chose a cut-
f 1/1000 of the peak spectral amplitude in the 
lations, which means that only the vectors 
sponding to the values above the cut-off were used to 
ute R.  

he model parameter resolution, ),(diag R  for 
ons of the mantle for P waves with k=9965 is shown 
igure 3, darker tones signify higher resolution. In 
ral, Lanczos resolution is greater in the major 
uction zones encircling the Pacific and beneath the 
nents of the Northern Hemisphere. The co-location 

of seismic sources and seismographic stations in the 
Pacific subduction zones and tectonically active 
continental regions is primarily responsible for the well-
resolved circum-Pacific velocity heterogeneity. Lack of a 
significant number of stations in the world’s ocean basis 
results in generally poor Lanczos resolution beneath the 
Pacific, Atlantic and Indian Ocean basis. The velocity 
heterogeneity we estimate is shown in Figure 4 also for P 

 
Figure 2.  Diagonal entries of R for model 2, k=4986, 9965, 14935 and 19890.



Table 2. Time breakdown for the computation of 500 singular values and singular vectors. 
 

iterations and timings p=1 p=2 p=3 p=4 p=5 
iterations 1293 671 460 352 289 
total time  1270 1190 1110 1100 1170 
matrix-vector products )( jAQ  49.6% 50.5% 53.5% 54.3% 52.6% 
basis generation (steps c to f) 0.1% 0.2% 0.3% 0.4% 0.8% 
reorthogonalization19,20 12.2% 11.5% 8.1% 7.7% 7.1% 
reduced problem )( sTs θ=  19.7% 16.4% 15.0% 13.1% 13.2% 
Ritz vectors )( sQ  18.3% 21.4% 23.0% 24.5% 26.3% 

 

waves. The shallow mantle (35-200 km) is dominated by 
high velocities associated with cratons and a circum-
Pacific low-velocity ring. For a detailed discussion on 
these results we refer the reader to [8] and [10]. 

 
6. Conclusions 

 
With the advent of a large set of seismic data collected 

in the last decades, as well as the implementation of 
efficient numerical algorithms on high performance 
parallel computers, very large inverse problems in 
Geophysics can now be tackled. Although we showed 
results obtained on CRAY T3E-900, our codes have been 
ported to an IBM SP and we are currently in the process 
of porting them to a Linux cluster. This will facilitate 
comparisons, exchange of models, and the use of our 
codes by researchers that have access to more modest 
computational resources.  

In this paper we showed a few examples where a SVD 
plays an important role in the proper estimation of spatial 
resolution and uncertainties. It remains to be investigated, 
however, how our calculations compare, in terms of 
computational costs and accuracy, with other approaches 
which use least squares based techniques for the 
computation of resolutions and covariances such as those 
proposed in [11]-[13]. 
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